High-level design of embedded hardware-software systems
M. Dolinsky
System Programming Research Lab, Scaryna's Gomel State University, Rechickoe shosse 33/191, 246023 Gomel, Belarus Received 19 May 1997; received in revised form 5 July 1999; accepted 4 August 1999
Abstract
This paper proposes methods, tools and results of application for hardware-software systems co-design. Methods include tuning selected or designing hardware for the following universal software tools: assembler-disassembler, C-compiler, and source-level debugger; provid​ing super fast debugging of software for target architecture on an instrumental computer IBM PC or a compatible one. To design hardware in parallel with software, two special tools are presented. The first is a system for microprogram automation synthesis from a microprogram that is written on a special microassembler or subset of C and is debugged with the debugger that was mentioned earlier. The second tool is high-level chip computer aided design system. Both systems use software developed for target architecture as tests for designing hardware. This paper also contains description of application results that were produced using the proposed methods; and tools for developing two embedded apparatuses: "Remote data gathering from transducers" and "Ion measurement", that are based on microcontrollers NT8020 (NTL, Minsk, Belarus) and Intel 8051, respectively. © 2000 Elsevier Science Ltd. All rights reserved.
Keywords: Hardware-software systems; Assembler-disassembler; C-compiler; Source-level debugger; Transducers; Ion measurements
1. Introduction
Several of the design starts in telecommunications, multi​media, and digital signal processing (DSP) are becoming increasingly complex, highly proprietary, and must operate at extremely high frequencies. It seems that the pressure on the engineer can only be relieved through next-generation system-level design methods. A major factor driving the adoption of a system-level design methodology is the high price of the errors made during the high-level design phase; when the requirements are being captured, when the func​tional specification is being created and when the appropri​ate architecture is being selected. These errors create major problems in meeting the schedule, because they are only detectable during the integration and test phases that occur much later downstream.
The conventional design methodology separates hard​ware and software design into two fairly independent paths that are not reunited until quite late in the design process—at the integration and test phase. If there are problems at this point, the time-to-market pressures often force a last-minute integration solution that is focused on the software, even though such a type of fix may not be the best solution. The long lead times and high cost of ASIC (application specific integrated circuits) design turns often
indicate that a software fix is the only viable alternative, but the true cost of a software solution may actually be quite high as it may compromise the functionality and perfor​mance of the final product. To enable system-level design, a new generation of hardware-software co-design tools will be required. Mentor Graphics calls their approach 'inte​grated system design', Cadence promotes the notion of "block-based design", and Synopsis focuses on behavioural synthesis [4-6]. But all three companies are looking at ways to move the design process to a higher level of abstraction and deal with reusable blocks of intellectual property, such as embedded cores.
2. Essence of proposed method

The proposed method [1] for integrated design of embedded hardware-software systems provides the design from requirements to integral testing phase. The following possibilities are given to the tear of develo​pers: design and simulation of hardware on all design phases from system-level to register transfer-level, devel​oping and debugging of firmware and software on assem​bler and/or ANSI (American National Standard Institute) C, co-simulation of developing hardware, firmware and software.
2.1. Target architecture description
In accordance with target architecture description method developers can describe processor core, memory, periph​erals and even external environments (transducers, objects to control, etc.). Metalanguage used in this method has powerful declarative possibilities, providing all modern architecture features (instruction sets, addressing modes, interrupt systems, peripherals like timers, serial and parallel ports). In addition the metalanguage includes possibilities for algorithmic description of any architecture features that cannot be described by declaration. An assembler for target architecture may be described as well. As a result of the target architecture description the team of developers gets a model of the embedded hardware-software system. This model allows writing and debugging for assembler programs and researching properties of designing system hardware and software. For example, developers can measure execution time of important software parts and defining time characteristics of accordant hardware (instruc​tion execution time, memory access time, registers access time etc.). This phase results in precise specifications for hardware and software design.

2.2. C-compiler tuning

To develop software more effectively, a C-compiler with possibility of tuning for target architecture is proposed. The compiler core consists of components created in response to compiler interface, pre-processor, lexical and syntax analy​sis, a system for abstract processor resource control and a general scheme for code generation. Tuning created by the developer provides implementation of primitives of programming language ANSI C by means of a target processor. In this context C-primitives are operations, operators, declarations and functions. Tuning is the set of C-functions which are "called" by the C-compiler core to generate C-primitive implementation on the target architec​ture assembler. Adequacy of compiler tuning is provided by the existence of a full set of tests for the C-compiler from one side, and a tool's test feature that automatically simu​lates all compiled assembler C-tests with automated proving of the tests' results, from the other. When C-compiler tuning is finished, developers can write and debug needed software with programming languages C and assembler.

2.3. Assembler-disassembler tuning

Tuning the universal assembler-disassembler ADIS finishes development of debugging tools. This process comprises definition of assembler mnemonics for instruc​tions and operands accordant to object code. As usual, meta​language has declarative and algorithmic possibilities.

When assembler-disassembler tuning is finished, assem​bler texts may be assembled and object code may by disas​sembled by ADIS; and, moreover, the C-compiler can generate object codes as well as assembler texts for source

C-programs. These binary codes of the developed software may be used for developing hardware testing.
2.4. Microprogram automation synthesis

In cases where the design is purely hardware, the method of microprogram automation synthesis [3] may be used. Firstly it provides fast development of operating algorithms with a special programming language "microprogram assembler" and a powerful subset of C (to generate from it microassembler program there is used tuned to "virtual microprogram processor" C-compiler). It also provides auto generation of microprogram automation description on CAD (Computer Aided Design) input languages (synthesiz-able VHDL, for example) from debugged microprograms.

2.5. High-level chip CAD

Hardware development may be done by the method of consistent hierarchial approximations [2] to its description in input languages of EDA tools. This method gives the possibility to define hardware as a union of interacting components where a model of each such component may be defined by accordant decomposition to standard elements: logic, selector, de-selector, coder, decoder, adder, multiplier, flip-flop, register, counter, RAM (Random Access Memory), ROM (Read Only Memory), micropro​cessor/microcontrollers, etc. The designer can use old projects to create new projects as well. In addition, special technologies for new models creation of complex devices, such new microcontrollers and microprocessors are proposed and developed. Co-simulation of designed hard​ware with implemented software is provided.

3. Software developed to support the method

3.1. Universal assembler-disassembler ADIS

ADIS is a software tool that provides the possibility to define synonymous accordance between assembler mnemo​nics and machine codes of target architecture as well as the possibility to process this information, to put it to internal representation for two independent utilities: assembler and disassembler. Time expense for ADIS tuning to new archi​tecture is not more than one man-week.

3.2. Retargettable C-compiler RCC

RCC allows description of code generation for C-primi​tives onto target architecture after which the user gets C-compiler for target architecture that works on an instru​mental IBM PC computer or compatible. The user can define generation of optimal code. The time expense for RCC tuning to new architecture is not more than one man-month.

3.3. Multi-functional debugger INTER

The multi-functional debugger INTER allows for quick and effective description of the designing system. Time expense is from one man-day to one man-month depending on the complexity of the system. The description includes CPU core, peripherals and even external environment; after which the designer can develop and research software for the project, modifying and researching different architecture versions (memory, instructions, addressing modes, etc.) in parallel. IDE (Integrated Development Environment) for metadescription debugging is very powerful. This possi​bility to tune IDE to any processor provides the debugger with the opportunity of processor development from one side, and simulation of a processor with peripherals and external environment (transducers, control objects, etc.) from the other.

In addition, the IDE independence from any particular processor means that IDE development is very useful as it is developed for all processors simultaneously (for described processors as well as for processors not yet described and even for future processors!).

The efficiency of the proposed approach is illustrated well by the following facts.

I. The list of already executed processor descriptions includes:
Analog devices ADSP-210xO
Apple 6502
DEC PDP-11
IBM IBM 360/370
IBM + Motorola + Apple Power PC 601
Inmos T414, T800
Intel 8051,8080,8086,8096
Microchip PIC
National Semiconductors COP880
NTL (Minsk, Belarus) NT8020, DN1630
Texas Instruments TMS320c25, c30, c40,
 c50, c80(MP), TMS370
II. The IDE has a standard multi-window interface (menu, window resizing-removing, mouse support, context-sensitive help, color tuning, service, etc) and a compre​hensive debug command set. Moreover, the IDE has non-traditional possibilities that essentially reduce time for search and correction of errors in software as well as in hardware.
The first non-traditional debug possibility is incremental debug technology. The simulation is executed immediately on the source code. The editor and debugger use the same window with source code. So compilation of the source code is going on while the user types or edits his program. As a result transition from editing to debugging and back may be done without any overhead charges. Moreover, the IDE supports "hot start" possibility, i.e. if the user found an error while executing the program he may not only correct it at once, but also resume the program execution from any
line of the program (as source program code editing does not change values of program variables and processor memory elements, registers, flags, etc.). The user may restart program execution as well. It is evident that such possibilities essentially reduce time for error finding and correcting.
A second non-traditional possibility is a powerful system for data view and edit, including the following facilities:
• user definition of enumerated and floating point types for data view (together with standard data view as binary, octal, decimal, hexadecimal, floating point numbers and characters);
• assembler operands in Watch-window and replacement of assembler expressions with their logical names (for example, "Line length" instead of "Table + 3[AX]");
• "Picture window", some text file is read into the window and any assembler operand, any program variable or any processor memory element value may be displayed in any position of that window. It (multi-window capabil​ity) supports effective developer orientation on system design, program debugging and external environment;
• storing and reloading of desktops without program execution resets (where the desktop defines presence and order of windows for source code, registers, flags, memory blocks, "picture windows", etc.).
The third non-traditional possibility is a "shadow commands" mechanism. "Shadow commands" begin from a comment character so they are transparent for all other tools (assemblers, debuggers). At the same time "shadow commands" are commands for the IDE to do the following useful actions:
• to set a value into some program variable or memory elements of processor, peripheral or external environ​ment ($S);
• to compare two values of some program variable or memory elements of processor, peripheral or external environment ($T). "Shadow commands" $S and $T are very convenient for automatic testing subroutines and program fragments. In addition, one can provide auto​matic error checking by setting $T commands in base points of the program;
• to set a probabilistic value into some program variable or memory elements of a processor, peripheral or external environment after each instruction execution or after defined processor cycles. This shadow command main​tains probabilistic simulation of external environment (external interruption, for example);
• to execute a metafunction ($I), in the tool any processor instruction is a metafunction and the developer may define additional metafunctions as consequences of metainstructions. This "shadow command" is useful for powerful test preparation in a few lines (by "shadow" cycles, shifts, increments, etc.);
• to write onto the disk fragment of a processor, peripheral
or external environment state. This "shadow command" is useful for forming binary tests for physical models.
The multi-functional debugger INTER has a universal interface for connection with accordant hardware emulators to provide tremendous acceleration of debugging programs execution.
3.4. Microprogram automaton synthesis system MPDS

The MPDS allows a designer to describe the operating algorithm of hardware being designed, with a powerful microprogram assembler or with a special subset of C. A microprogram assembler includes a full set of arithmetic, logic and shift instructions as well as compare and control instructions. The microprogram debugging takes place in the multi-functional debugger "INTER". The possibilities are described above. Microprogram automaton description (on VHDL, for example) can be automatically done at the base of debugged microprogram. And this automaton is a union of interacting control and executive devices.
3.5. High-level chip CAD tool HLCCAD

The HLCCAD provides possibilities for "top-down" design as well as for "bottom-up" design and supports a design's hierarchical simulation. The main advantages of HLCCAD are the following possibilities provided for designers:

• use of microprocessor/microcontroller models as design components;

• software and hardware are co-simulated "as is". The soft​ware is simulated as C and/or assembler programs. The hardware is simulated as a composition of standard elements (from logic elements to RAM) or high-level model for complex devices (such as microcontrollers);

• an effective technology for high-level model creation (using programming language and IDE such as C++, Delphi and any others providing DLL (Dynamic Library Linkage) support;

• "cycle accurate" and "instruction accurate" program simulation;

• generation of synthesizable VHDL-description of hard​ware composed from standard elements.

4. Application examples

4.1. Remote data gathering from transducers

The company, that was to develop on apparatus for remote data gathering from transducers decided to design a special microcontroller (later named NT8020). After the requirements and specification for NT8020 were done, work on its VHDL-design started. Within two months, the univer​sal tools tuning to NT8020 were made in parallel. In addi​tion, one month was spent to write and debug the control
software for the embedded system based on NT8020. We want to emphasize here that only after all the software had been did the only then first samples of NT8020 chip appear. The software included the following components: assembler-disassembler for NT8020, ANSI C compiler for NT8020, debugger-simulator for NT8020 and control program for embedded apparatus. On the other hand, the apparatus "Remote data gathering from transducers" based on the microcontroller NT8020, was simulated as a whole project: the NT8020 core, its internal and external periph​erals (timers, serial and parallel ports, etc.), and the device external environment.
4.2. Ion measurement

Another company decided to use the microcontroller Intel 8051 while developing an apparatus for ion measurement in liquids. Preliminary analysis showed that it was necessary to use two Intel 8051 microcontrollers, firstly, for measure​ments and calculations and secondly, as an interface between the apparatus and the user (control buttons and display screen). Tuning was done within a month. Then within two months the subroutine's libraries for float arith​metic and display screen control as well as the main program were developed. Again all software (with full simulation of microcontroller, peripherals and external environment) was developed much before the first hardware sample was ready. It not only cut the overall time for apparatus development, but also made hardware debugging essentially easier.
5. Conclusion

The novelty of this approach may be highlighted as following:
Software and hardware are co-simulated "as is" (the soft​ware as C and/or assembler programs and the hardware as synthesizable VHDL descriptions or high-level model for complex devices such as microcontrollers). An important feature is the high degree of re-usability of software and hardware models provided by retargetability of the proposed tools.
The method and tools for high-level design of embedded hardware-software systems described in this paper may dramatically cut down the development time and improve quality of such systems in each of the following cases:
• the design team needs to do alternate research on only a few processor architectures (does not matter whether the processor already exists or is yet to be developed);
• a special processor is designed for some amount of problem solving;
• the system is based on microprocessor/microcontroller, but the debugging tools are absent or weak;
• the embedded system is intended to be a purely hardware system.
Detailed information, as well as DEMO-versions of tools described in this paper may be got from: http://www.gsu. unibel.by/sprl.
References

[1] Dolinsky MS, Ziselman IM, Belotsky SL. Debugger-interpreter with tune possibility. Programming: Moscow 1995;6:36-45 in Russian.
[2] Maximey IV, Dolinsky MS, Levchuck VD. Program technological tools for complex system modelling. Periodicals advances in modelling & analysis: Paris AMSE 1993;39(1):1-10.
[3] Dolinsky M, Ziselman I, Harrasov A, Kovaluck V. Program system for computer-aided synthesis of device with microprogram control. In: CAD of Digital Devices, Proceeding of International Conference, Minsk, 1995. p. 146-7.
[4] Bailey B, Leef S. Making the shift toward integrated systems design. Electronic design 1996;July 8:80-6.
[5] George P. Block based design: creating a system on a chip. Electronic design 1996;July 8:86-92.
[6] Fernandes P. Moving from RTL to behavioural-level design. Electro​nic design 1996;July 8:92-8.
